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In the Thomas–Fermi (TF) regime, S. Stringari [Phys. Rev. Lett., 77, 2360 (1996)] established
the hydrodynamic normal modes of an interacting dilute Bose-condensed fluid confined in an
isotropic harmonic trap. Here, we extend this treatment beyond the TF condensate using the
work of B. Hu, G. Huang and Y. Ma [Phys. Rev. A, 69, 063608 (2004)] as a starting point.
Both numerical results for low-lying eigenfrequencies, for various angular momentum quantum
numbers ‘ and n¼ 0, and also samples of corresponding eigenfunctions, are presented. Finally,
eigenfrequencies are also given for some collective excitations in an axially symmetrical trap.

Keywords: Interacting Bose-condensed fluids; Collective excitations; Spherical and axially
symmetrical traps

1. Background and outline

The experimental discovery of Bose–Einstein condensation (BEC) of alkali-metal fluids
in magnetic traps has mainly focussed on the physical properties of a confined, interact-
ing, dilute Bose fluid. The widely used Thomas–Fermi (TF) approximation is sufficient
to provide a useful description of the interior of the condensate but the surface of the
condensate is not amenable to such a treatment. To include the contribution from this
surface, Fetter and Feder [1] in an important study calculated the leading correction of
the condensate wave function, condensate energy, and low-lying collective excitations
beyond the TF description.

The present study has been stimulated by a treatment of Hu, Huang and Ma [2],
who have proposed a method for finding analytical solutions of the Bogoliubov-
de Gennes (BdG) equations for the low-lying collective excitations in a harmonically
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trapped BE condensate beyond the TF limit. Fetter and Feder [1] explicitly extend the
boundary-layer formalism of Dalfovo et al. [3] in their study, while Hu et al. [2] draw on
a variational principle to the approximate ground state of the condensate with a Fetter-
like variational ground-state wave function [4,5]. This leads them [2] eventually to a
fuller study of the elementary excitations on such trapped, interacting Bose fluids.

The outline of the present article is then as follows. In section 2 we briefly summarize
the expressions of the eigenfrequencies, denoted �!!nr‘ following Hu et al. [2]. For
the special case nr ¼ 0 and ‘� 1, their complete expression for �!!nr‘ can be in terms
of Euler’s beta function B(a, b) as given in equation (2.2). Their expression for
�!!nr‘ is thoroughly analyzed in section 2, both analytically in limiting cases and using
numerical plots. Then, section 3 is concerned with sample results for corresponding
eigenfunctions.

While the discussion of sections 2 and 3 is relevant to isotropic harmonic confine-
ment, two Appendices deal, albeit briefly, with the case of axial symmetry. Some
approximate results of Hu et al. [2] for the eigenfrequencies are proposed. Section 4
constitutes a summary plus a discussion of directions for further work in this important
area of many-body physics: namely collective excitations.

2. Low-lying collective excitations with spherical trapping

We have just summarized on the nature of the input in the study of collective eigen-
frequencies �!!nr‘ by Hu et al. [2]. Their general expression for �!!nr‘ reduced for nr ¼ 0
and ‘� 1 to the form as in [2]

�!!0‘ ¼
ð‘þ ‘qÞ1=2

2B ‘þ 3=2, qþ 1ð Þ
B ‘þ

3

2
, qþ 1

� �
þ B ‘þ

3

2
, 2qþ 1

� ��

þ
�2

q
ð‘q2 � ‘q� 3qÞB ‘þ

3

2
, q� 1

� �
� 2qð1� qÞBð‘þ 1, q� 2Þ

� ��
, ð2:1Þ

where Euler’s beta function B(a, b) introduced already in section 1 is defined in terms
of Euler’s gamma function by

Bða, bÞ ¼
�ðaÞ�ðbÞ

�ðaþ bÞ
: ð2:2Þ

The change made in equation (2.1) from the result of Hu et al. [2] is to introduce �2=q
as one ‘independent’ variable, i.e. �!!0‘ ¼ �!!0‘ð�

2=q, qÞ.
The important parameter � entering the eigenfrequencies of the collective modes is

defined by Hu et al. [2] as

� ¼
�hh!?

2�
: ð2:3Þ

Here, the trapping potential has the form

VextðrÞ ¼
1

2
m!2

?ðx
2 þ y2 þ z2Þ, ð2:4Þ
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where the grand canonical Hamiltonian density of a trapped dilute Bose fluid with
a weak repulsive interaction between atoms takes the form

H ¼ �
�hh2

2m
r2 þ VextðrÞ � �þ

g

2
�̂�yðr, tÞ�̂�ðr, tÞ: ð2:5Þ

Here �̂�ðr, tÞ is the field operator, g ¼ 4��hh2asc=m is the constant determining the strength
of the atomic interactions, with m as the atomic mass. Finally, asc (>0) is the s-wave
scattering length, while � denotes the chemical potential of the assembly.

Having established the theoretical input required to characterize the eigenfrequencies
for the low-lying collective excitations in such a trapped Bose-condensed fluid,
we turn to the numerical evaluation of �!!0‘ in equation (2.1). Before presenting plots
of �!!2

0‘ versus �2=q, from which will emerge a valuable choice of one ‘independent’
variable, let us relate the beta function contributions entering equation (2.1) by
noting first that

Bða, q� 1Þ ¼
�ðaÞ�ðq� 1Þ

�ðaþ q� 1Þ
¼

aþ q� 1

q� 1
Bða, qÞ, ð2:6Þ

where B(a, q) on the right-hand side of equation (2.6) is determined by equation (2.2).

2.1. Representation of eigenfrequencies of collective modes for nr ¼ 0

In figure 1, the results of equation (2.1) for the square �!!2
0‘ of the collective mode

frequencies are displayed for values of ‘ ¼ 1–10. What we emphasize, is the dependence
on the variable �2=q, displayed explicitly in equation (2.1). While there remains residual
dependence of the variational parameter q (see Appendix A), the curves shown prove
that �!!2

0‘ in the above range of ‘ depend only weakly on q, provided q remains small
(q ¼ 0.001–0.01 in figure 1). However, refined treatments beyond the work of Hu
et al. will include higher terms in �2=q than that displayed in equation (2.1).

3. Sample eigenfunctions for zero radial quantum number

and different orbital angular momenta

The purpose of this section is to present numerical calculations of sample
eigenfunctions related to the eigenfrequencies recorded in figure 1. As shown in the
figure, we assume the radial quantum number nr to be zero, and allow the orbital angu-
lar momentum quantum number to span the range from ‘¼ 1 to 10. In the notation
of Hu et al. [2], the radial part of their eigenfunction labeled ’�ðrÞ is plotted.
Thus, omitting the spherical harmonic Y‘mð�,�Þ in equation (9) of [2], we plot

R3=2
? ’�ðrÞ ¼ ð2=I0‘Þ

1=2
ð� �!!ð0Þ

0‘ Þ
�1=2

ð1� �rr2Þðqþ1Þ=2 �rr‘P0‘ð�rr
2Þ: ð3:1Þ
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In equation (3.1), �rr ¼ r=R?, P0‘ are related to the Jacobi polynomials [2], while the
angular frequencies �!!ð0Þ

0‘ are given explicitly by

ð �!!ð0Þ
0‘ Þ

2
¼ ‘ð1þ qÞ: ð3:2Þ

Finally, I0‘ appearing in the normalization of ’�ðrÞ is defined by

I0‘ ¼

Z 1

0

dx x‘þ1=2ð1� xÞqP2
0‘ðxÞ: ð3:3Þ

Figure 2 shows that the eigenfunctions have a maxima which moves outwards
towards R? as ‘ increases from 1 to 10. To analyze further how the heights, ’max

� , of
the curves in figure 2 depend on the orbital angular momentum, we have constructed
figure 3 showing, essentially, ’max

� as a function of ‘. While the dashed curve shown
guides the eye passing near the calculated points, the decay with increasing ‘ is
approximately fitted by an inverse fractional power of ‘ as recorded in the caption
of figure 3.

Figure 1. Square �!!2
0‘ of the collective mode frequencies, equation (2.1), as a function of �2=q, for

q ¼ 0.001–0.01 and � ¼ 0–0.1, and for different values of ‘ ¼ 1–10. Despite the fact that �!!0‘ in equation (2.1)
formally depends on � and q separately, the plot shows that, for each value of ‘, �!!2

0‘ almost collapses into
a function of the single variable �2=q, at least over the range of values � and q considered here. Dashed lines
are linear approximations to the square eigenfrequencies in the limits q ! 0, �2=q ! 0, corresponding to the
TF limit, where !2

0‘ ! ‘, as is clearly evident here.
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Figure 2. Eigenfunctions ’�ðrÞ for ‘ ¼ 1–10 (topmost curve: ‘¼ 1), for q¼ 0.1 and �¼ 1.

Figure 3. Maximum values of the eigenfunctions ’�ðrÞ vs. ‘. Dashed line is a guide to the eye (’max
� / ‘�0:36).
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4. Summary and future directions

In addition to the immediate numerical results presented here, especially in figures 2
and 3, our earlier work has intimate connection with the BdG equations [6,7].
Thus, the fact that some analytic progress is possible in solving the BdG equations
has motivated us to reopen our own earlier studies, which we hope subsequently to
report in detail.

In connection with figures 2 and 3, and especially the plots of low-lying collective
excitation modes, further experimental work (presently restricted to a region near
the origin of figure 1) will be important in determining the direction of future fruitful
theoretical work. One possible refinement is to go beyond the plots in figure 2
which restrict consideration of the �2=q independent variable to Oð�2=qÞ only.
Another, of course is to refine the variational function [4] on which the Hu et al.
study [2] centres upon.
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Appendices

A. Route to determine the variational parameter q

While in figure 1 we demonstrate that �2=q is the dominant independent variable
in determining �!!0‘ from equation (2.1), there is residual dependence on q. Also, to
obtain quantitatively from figure 1 the departures from the TF limiting eigenfrequencies,
we must fix �2=q, starting from confining potential parameters defined in equation (2.4)
plus the value of the chemical potential �.
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In their study, Hu et al. [2] also consider a non-spherically symmetric trap,
characterized by a generalized potential given by

VextðrÞ ¼
1

2
m!2

?ðx
2 þ y2 þ �2z2Þ: ðA:1Þ

In connection with this potential, Ma and Chen [5] constructed the following
variational estimate of the energy

E0ðR?,Rz, qÞ ¼
1

2
�hh!?

1

2
A

2

R2
?

þ
1

Rz

� �
þ
1

2
B 2R2

? þ �2R2
z

� �
þ 2�PC

R2
?

Rz

� �
, ðA:2Þ

where q, R?, Rz are variational parameters, and R?, Rz are the two radii associated
with the axially symmetric trap, with Rz reducing to R? in the limit �¼ 1, and

P ¼ ðN0 � 1Þ
asc

aho
, ðA:3Þ

N0 being the particle number in the condensate and aho ¼ ð�hh=m!?Þ
1=2 the characteristic

oscillator length of the trapping potential. In equation (A.2), A, B and C are given
functions of q, defined as

A ¼
7

2
þ qþ

5

2q
ðA:4aÞ

B ¼
7

2
þ q

� ��1

ðA:4bÞ

C ¼
�ð3þ 2qÞ

�ð3=2Þ�ð2qþ 9=2Þ

�ðqþ 7=2Þ

�ð2þ qÞ

� �2
: ðA:4cÞ

Figure A.1 shows P as a function of the variational parameter q, obtained by
minimizing the variational estimate of the energy, equation (A.2), with respect to q
and R? ¼ Rz, in the case �¼ 1. Figure A.1 clearly shows that the TF limit is recovered
in the limit q ! 0 and P ! 1 [2,5].

B. Approximate expressions for collective mode frequencies �xx0‘

in an axisymmetric trap with k 6¼ 1

Stringari [8] obtained the low energy excitations from the hydrodynamic limit for
a harmonically confined Bose-condensed fluid. His result for the frequencies with
spherical symmetry may be written as [8]

! ¼ !hoð2n
2 þ 2n‘þ 3nþ ‘Þ1=2, ðB:1Þ
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where !ho is the angular frequency associated with the harmonic trap. In equation (B.1),
n denotes the number of radial nodes, with ‘ throughout giving the orbital angular
momentum.

For � 6¼ 1, with

V ¼
1

2
m!2

?s
2 þ

1

2
m!2

zz
2, ðB:2Þ

where s ¼ ðx2 þ y2Þ1=2 is the radial variable in the xy plane. Stringari [8] exploits the
axial symmetry to note that the third component m of the angular momentum remains
a good quantum number, the excitation frequencies now, however, depending on m.
He obtains explicit results in particular cases, which we cite below.

Since available magnetic traps are often highly anisotropic, let us take the case
discussed by Stringari [8], who derives a frequency law for two decoupled modes
(with n¼ 1 and ‘¼ 0) of the form [8]

!2ðm ¼ 0Þ ¼ !2
? 2þ

3

2
�2 �

1

2
9�4 � 16�2 þ 16
� �1=2� �

, ðB:3Þ

with � ¼ !z=!?. When � ! 1, one recovers Stringari’s corresponding frequencies
21=2!ho and 51=2!ho for spherical traps.

Figure A.1. P ¼ ðN0 � 1Þasc=aho as a function of the variational parameter q is shown, determined by
numerically minimizing equation (A.2) with respect to q and R? ¼ Rz, in the case �¼ 1. The TF limit is
clearly recovered when q ! 0 and P ! 1.
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As Stringari also stresses, in the limit �� 1 corresponding to disc-like symmetry, the
two solutions in equation (B.3) approach angular frequencies ð10=3Þ1=2!? and 31=2!z,
respectively. For the other limit � � 1 corresponding to cigar-like geometry, the two
frequencies are obtained as ð5=2Þ1=2!z and 2!?.

These results, of course, bear on the connection between the Hu et al. results for
� 6¼ 1, and in particular with their spherical trap findings as �! 1.
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